skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sorourifar, Farshud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The discovery of molecules with optimal functional properties is a central challenge across diverse fields such as energy storage, catalysis, and chemical sensing. However, molecular property optimization (MPO) remains difficult due to the combinatorial size of chemical space and the cost of acquiring property labels via simulations or wet-lab experiments. Bayesian optimization (BO) offers a principled framework for sample-efficient discovery in such settings, but its effectiveness depends critically on the quality of the molecular representation used to train the underlying probabilistic surrogate model. Existing approaches based on fingerprints, graphs, SMILES strings, or learned embeddings often struggle in low-data regimes due to high dimensionality or poorly structured latent spaces. Here, we introduce Molecular Descriptors with Actively Identified Subspaces (MolDAIS), a flexible molecular BO framework that adaptively identifies task-relevant subspaces within large descriptor libraries. Leveraging the sparse axis-aligned subspace (SAAS) prior introduced in recent BO literature, MolDAIS constructs parsimonious Gaussian process surrogate models that focus on task-relevant features as new data is acquired. In addition to validating this approach for descriptor-based MPO, we introduce two novel screening variants, which significantly reduce computational cost while preserving predictive accuracy and physical interpretability. We demonstrate that MolDAIS consistently outperforms state-of-the-art MPO methods across a suite of benchmark and real-world tasks, including single- and multi-objective optimization. Our results show that MolDAIS can identify near-optimal candidates from chemical libraries with over 100,000 molecules using fewer than 100 property evaluations, highlighting its promise as a practical tool for data-scarce molecular discovery. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  2. Symbolic regression (SR) is an emerging branch of machine learning focused on discovering simple and interpretable mathematical expressions from data. Although a wide-variety of SR methods have been developed, they often face challenges such as high computational cost, poor scalability with respect to the number of input dimensions, fragility to noise, and an inability to balance accuracy and complexity. This work introduces SyMANTIC, a novel SR algorithm that addresses these challenges. SyMANTIC efficiently identifies (potentially several) low-dimensional descriptors from a large set of candidates (from ∼105 to ∼1010 or more) through a unique combination of mutual information-based feature selection, adaptive feature expansion, and recursively applied l 0 -based sparse regression. In addition, it employs an information-theoretic measure to produce an approximate set of Pareto-optimal equations, each offering the best-found accuracy for a given complexity. Furthermore, our open-source implementation of SyMANTIC, built on the PyTorch ecosystem, facilitates easy installation and GPU acceleration. We demonstrate the effectiveness of SyMANTIC across a range of problems, including synthetic examples, scientific benchmarks, real-world material property predictions, and chaotic dynamical system identification from small datasets. Extensive comparisons show that SyMANTIC uncovers similar or more accurate models at a fraction of the cost of existing SR methods. 
    more » « less
    Free, publicly-accessible full text available February 12, 2026
  3. Self-optimizing efficiency of vapor compression cycles (VCCs) involves assigning multiple decision variables simultaneously in order to minimize power consumption while maintaining safe operating conditions. Due to the modeling complexity associated with cycle dynamics (and other smart building energy systems), online self-optimization requires algorithms that can safely and efficiently explore the search space in a derivative-free and model-agnostic manner. This makes Bayesian optimization (BO) a strong candidate for self-optimization. Unfortunately, classical BO algorithms ignore the relationship between consecutive optimizer candidates, resulting in jumps in the search space that can lead to fail-safe mechanisms being triggered, or undesired transient dynamics that violate operational constraints. To this end, we propose safe local search region (LSR)-BO, a global optimization methodology that builds on the BO framework while enforcing two types of safety constraints including black-box constraints on the output and LSR constraints on the input. We provide theoretical guarantees that under standard assumptions on the performance and constraint functions, LSR-BO guarantees constraints will be satisfied at all iterations with high probability. Furthermore, in the presence of only input LSR constraints, we show the method will converge to the true (unknown) globally optimal solution. We demonstrate the potential of our proposed LSR-BO method on a high-fidelity simulation model of a commercial vapor compression system with both LSR constraints on expansion valve positions and fan speeds, in addition to other safety constraints on discharge and evaporator temperatures. 
    more » « less
  4. Abstract Variational quantum eigensolvers (VQEs) represent a promising approach to computing molecular ground states and energies on modern quantum computers. These approaches use a classical computer to optimize the parameters of a trial wave function, while the quantum computer simulates the energy by preparing and measuring a set of bitstring observations, referred to as shots, over which an expected value is computed. Although more shots improve the accuracy of the expected ground state, it also increases the simulation cost. Hence, we propose modifications to the standard Bayesian optimization algorithm to leverage few‐shot circuit observations to solve VQEs with fewer quantum resources. We demonstrate the effectiveness of our proposed approach, Bayesian optimization with priors on surface topology (BOPT), by comparing optimizers for molecular systems and demonstrate how current quantum hardware can aid in finding ground‐state energies. 
    more » « less